首页 关于
树枝想去撕裂天空 / 却只戳了几个微小的窟窿 / 它透出天外的光亮 / 人们把它叫做月亮和星星
目录

第四章:周期轨迹和庞加莱回归映射

4.1 冲击响应下的自治系统(Autonomous Systems with Impulse Effects)

一个冲击响应下的自治系统由三个部分组成:

  1. an autonomous ordinary differential equation, \(\dot{x}(t) = f\left(x(t)\right)\), defined on some state space \(\mathcal{X}\);
  2. a hyper surface \(\mathcal{S}\) at which solutions of the differential equation undergo a discrete transition that is modeled as an instantaneous reinitialization of the differential equation;
  3. a rule \(\Delta : \mathcal{S} \to \mathcal{X}\) that specifies the new initial condition as a function of the point at which the solution impacts \(\mathcal{S}\).
这样的系统可以用如下的符号表示: $$ \begin{equation}\label{f4.1} \Sigma : \begin{cases} \dot{x}(t) = f\left(x(t)\right) & x^-(t) \notin \mathcal{S} \\ x^+(t) = \Delta\left(x^-(t)\right) & x^-(t) \in \mathcal{S} \end{cases} \end{equation} $$ \(\mathcal{S}\)被称为冲击平面(impact surface),\(\Delta\)被称为冲击映射(impact map)。有时也称他们为switching surfacereset map

公式(\(\ref{f4.1}\))的一个解的形式化描述为\(\varphi(t)\) is developed on the basis of solutions to the associated ordinary differential equation: $$ \dot{x} = f(x) $$




Copyright @ 高乙超. All Rights Reserved. 京ICP备16033081号-1