函数极限存在的主要定理
函数的极限与数列极限有着密切的关系,它们的定义都极为相似。 Heine定理就描述了一种函数极限与数列极限的关系,又称为归结原理:函数\(f(x)\)在\(x_0\)处有极限\(l\)的一个充要条件是, 对于任何收敛于\(x_0\)的数列\(\{x_n \neq x_0, n = 1, 2, 3, \cdots\}\),数列\(\{f(x_n)\}\)有极限\(l\)。可以形式化描述为:
$$ \underline{ \lim_{x \to x_0} f(x) = l } \Leftrightarrow \underline{ \forall \{x_n\} \in \left\{\{x_n \neq x_0\} | \lim_{n \to \infty} x_n = x_0 \right\} \Rightarrow \lim_{n \to \infty} f(x_n) = l } $$我们先证明其必要性。若\(\underset{x \to x_0}{\lim} f(x) = l\),根据函数极限的定义可以说,\(\forall \varepsilon > 0, \exists \delta > 0\), 使得当\(|x - x_0| < \delta\)时,\(|f(x) - l| < \varepsilon\)总成立。那么对于已经取定的\(\delta > 0\),若\(\underset{n \to \infty}{\lim} x_n = x_0\), 一定存在一个\(N \in N^*\),使得\(n > N\)时有\(|x_n - x_0| < \delta\),此时\(|f(x_n) - l| < \varepsilon\),即\(\underset{n \to \infty}{\lim} f(x_n) = l\)。
再来证明其充分性。若\(\underset{x \to x_0}{\lim} f(x) \neq l\),那么一定存在一个正数\(\varepsilon > 0\) 在\(x_0\)的去心邻域内,我们一定能够找到一点\(x_n\),使得\(|f(x_n) - l| > \varepsilon\)。如此,我们可以构建一个数列\(\{x_n\}\)满足\(|x_n - x_0| < \cfrac{1}{n}\), \(n \to \infty\)时\(x_n \to x_0\),但是\(\underset{n \to \infty}{\lim} f(x_n) \neq l\)。存在矛盾。
在Heine定理的基础上,我们可以很容易证明函数极限存在的另一个充要条件:\(f(x)\)在\(x_0\)处的左右极限存在且相等,即\(\underset{x \to x_0^-}{\lim} f(x) = \underset{x \to x_0^+}{\lim} f(x)\)。此外在介绍数列极限时,我们就已经接触了柯西收敛原理和基本列。 函数极限也有一个柯西(Cauchy)收敛原理:函数\(f(x)\)在\(x_0\)处有极限,当且仅当,\(\forall \varepsilon > 0\), \(\exists \delta > 0\), 使得\(x_0\)的\(\delta\)去心邻域内的两点\(|x_1 - x_0| < \delta\),\(|x_2 - x_0| < \delta\),有\(|f(x_1) - f(x_2)| < \varepsilon\)总成立。
夹逼原理为我们提供了一种计算极限的有效方法:若函数\(f(x), g(x), h(x)\)在\(x_0\)的去心邻域内满足不等式\(g(x) ≤ f(x) ≤ h(x)\), 并且\(g(x), h(x)\)在点\(x_0\)处都有极限\(l\),那么函数\(f(x)\)在点\(x_0\)处也有极限\(l\),即\(\underset{x \to x_0}{\lim} f(x) = l\)
【472】\(\underset{x \to \infty}{\lim}\cfrac{\sin(x)}{x}\)
解:因为\(|\sin(x)| ≤ 1\),所以\(\left| \cfrac{\sin(x)}{x} \right| ≤ \left| \cfrac{1}{x} \right|\),而\(\underset{x \to \infty}{\lim}\cfrac{1}{x} = 0\), 所以\(\underset{x \to \infty}{\lim}\cfrac{\sin(x)}{x} = 0\)。
【505】\(\underset{x \to +\infty}{\lim} \left(\sin \sqrt{x + 1} - \sin \sqrt{x}\right)\)
解:根据和差化积的公式,有\(\underset{x \to +\infty}{\lim} \left(\sin \sqrt{x + 1} - \sin \sqrt{x}\right) = \underset{x \to +\infty}{\lim} 2\sin\left(\cfrac{\sqrt{x + 1} - \sqrt{x}}{2}\right)\cos\left(\cfrac{\sqrt{x + 1} + \sqrt{x}}{2}\right)\)
因为\(\underset{x \to +\infty}{\lim} \sin\left(\cfrac{\sqrt{x + 1} - \sqrt{x}}{2}\right) = 0\), 并且\(\left|\cos\left(\cfrac{\sqrt{x + 1} + \sqrt{x}}{2}\right)\right| ≤ 1\)。 所以\(\underset{x \to +\infty}{\lim} \left(\sin \sqrt{x + 1} - \sin \sqrt{x}\right) = 0\)。
【507】\(\underset{x \to \infty}{\lim} \left(\cfrac{x + 2}{2x - 1}\right)^{x^2}\)
解:当\(x > 4\)时,有\(0 < \cfrac{x + 2}{2x - 1} < \cfrac{6}{7}\),此时\(\left(\cfrac{x + 2}{2x - 1}\right)^{x^2} < \left(\cfrac{6}{7}\right)^{x^2}\)。 而\(\underset{x \to +\infty}{\lim} \left(\cfrac{6}{7}\right)^{x^2} = 0\),所以\(\underset{x \to +\infty}{\lim} \left(\cfrac{x + 2}{2x - 1}\right)^{x^2} = 0\)
当\(x < -3\)时,有\(0 < \cfrac{x + 2}{2x - 1} < \cfrac{1}{7}\),而\(\underset{x \to -\infty}{\lim} \left(\cfrac{1}{7}\right)^{x^2} = 0\), 因此\(\underset{x \to -\infty}{\lim} \left(\cfrac{x + 2}{2x - 1}\right)^{x^2} = 0\)
综上所述,\(\underset{x \to \infty}{\lim} \left(\cfrac{x + 2}{2x - 1}\right)^{x^2} = 0\)
【593】(1)\(\underset{x \to -\infty}{\lim} \left(\sqrt{x^2 + x} - x\right)\); (2)\(\underset{x \to +\infty}{\lim} \left(\sqrt{x^2 + x} - x\right)\)
解:(1) \(\underset{x \to -\infty}{\lim} \left(\sqrt{x^2 + x} - x\right) = +\infty\)
(2) \(\underset{x \to +\infty}{\lim} \left(\sqrt{x^2 + x} - x\right) = \underset{x \to +\infty}{\lim} \cfrac{x^2 + x - x^2}{\sqrt{x^2 + x} + x} = \cfrac{1}{2}\)
【594】(1)\(\underset{x \to -\infty}{\lim} \left(\sqrt{1 + x + x^2} - \sqrt{1 - x + x^2}\right)\); (2)\(\underset{x \to +\infty}{\lim} \left(\sqrt{1 + x + x^2} - \sqrt{1 - x + x^2}\right)\)
解:(1) \(\underset{x \to -\infty}{\lim} \left(\sqrt{1 + x + x^2} - \sqrt{1 - x + x^2}\right) = \underset{x \to -\infty}{\lim} \cfrac{1 + x + x^2 - 1 + x - x^2}{\sqrt{1 + x + x^2} + \sqrt{1 - x + x^2}} = -\cfrac{2}{2} = -1\)
(2) \(\underset{x \to +\infty}{\lim} \left(\sqrt{1 + x + x^2} - \sqrt{1 - x + x^2}\right) = \underset{x \to +\infty}{\lim} \cfrac{2x}{\sqrt{1 + x + x^2} + \sqrt{1 - x + x^2}} = \cfrac{2}{2} = 1\)
【595】(1)\(\underset{x \to 1^-}{\lim} \arctan \cfrac{1}{1 - x}\); (2)\(\underset{x \to 1^+}{\lim} \arctan \cfrac{1}{1 - x}\)
解:(1) \(x \to 1^-\)时,\(\cfrac{1}{1 - x} > 0\),所以\(\underset{x \to 1^-}{\lim} \arctan \cfrac{1}{1 - x} = \cfrac{\pi}{2}\)
(2)因为\(x \to 1^+\)时,\(\cfrac{1}{1 - x} < 0\),所以\(\underset{x \to 1^+}{\lim} \arctan \cfrac{1}{1 - x} = -\cfrac{\pi}{2}\)
【596】(1)\(\underset{x \to 0^-}{\lim} \cfrac{1}{1 + e^{\frac{1}{x}}}\); (2)\(\underset{x \to 0^+}{\lim} \cfrac{1}{1 + e^{\frac{1}{x}}}\)
解:(1) \(x \to 0^-\)时,\(\cfrac{1}{x} \to -\infty\),所以\(\underset{x \to 0^-}{\lim} \cfrac{1}{1 + e^{\frac{1}{x}}} = 1\)
(2)因为\(x \to 0^+\)时,\(\cfrac{1}{x} \to +\infty\),所以\(\underset{x \to 0^+}{\lim} \cfrac{1}{1 + e^{\frac{1}{x}}} = 0\)
【597】(1)\(\underset{x \to -\infty}{\lim} \cfrac{\ln \left(1 + e^x \right)}{x}\); (2)\(\underset{x \to +\infty}{\lim} \cfrac{\ln \left(1 + e^x \right)}{x}\)
解:(1) \(x \to -\infty\)时,\(e^x \to 0\),所以\(\ln \left(1 + e^x \right) \to 0\),\(\underset{x \to -\infty}{\lim} \cfrac{\ln \left(1 + e^x \right)}{x} = 0\)
(2)\(\underset{x \to +\infty}{\lim} \cfrac{\ln \left(1 + e^x \right)}{x} = \underset{x \to +\infty}{\lim} \left[\cfrac{\ln e^x}{x} + \cfrac{\ln \left(1 + e^{-x}\right)}{x} \right] = 1\)
【598】证明:(1) 当\(x \to -\infty\)时,\(\cfrac{2x}{1 + x} \to 2^+\); (2)当\(x \to +\infty\)时,\(\cfrac{2x}{1 + x} \to 2^-\);
证:(1) 当\(x < -1\)时,有\(|1 + x| < |x|\), 则\(\left|\cfrac{2x}{1 + x}\right| > \left|\cfrac{2x}{x}\right|\),并且\(\cfrac{2x}{1 + x} > 0\), 所以\(\cfrac{2x}{1 + x} > 2\),当\(x \to -\infty\)时,\(\cfrac{2x}{1 + x} \to 2^+\)。
(2) 当\(x > 0\)时,又\(|1 + x| > |x|\),, 则\(\left|\cfrac{2x}{1 + x}\right| < \left|\cfrac{2x}{x}\right|\),并且\(\cfrac{2x}{1 + x} > 0\), 所以\(\cfrac{2x}{1 + x} < 2\),当\(x \to +\infty\)时,\(\cfrac{2x}{1 + x} \to 2^-\)。
【599】证明:(1) 当\(x \to 0^-\)时,\(2^x \to 1^-\); (2)当\(x \to 0^+\)时,\(2^x \to 1^+\);
证:显然\(2^x\)在\((-\infty, +\infty)\)上是增函数,所以\(x < 0\)时,有\(2^x < 2^0\),\(x > 0\)时,有\(2^x > 2^0\)。 所以当\(x \to 0^-\)时,\(2^x \to 1^-\); (2)当\(x \to 0^+\)时,\(2^x \to 1^+\)。
【600】设\(f(x) = x + \left[x^2\right]\),求\(f(1), f(1^-), f(1^+)\)。
解:\(f(1) = 1 + 0 = 1\),\(f(1^-) = 1 + 0 = 1\),\(f(1^+) = 1 + 1 = 2\)。
【601】设\(f(x) = \text{sgn} (\sin {\pi x})\),求\(f(n), f(n^-), f(n^+), n = 0, ±1, \cdots\)。
解:\(f(n) = \text{sgn} (\sin {\pi n}) = 0\),\(f(n^-) = \underset{x \to n^-}{\lim} \text{sgn} (\sin {\pi x}) = (-1)^{n - 1}\), \(f(n^+) = \underset{x \to n^+}{\lim} \text{sgn} (\sin {\pi x}) = (-1)^n\)。
【602】求\(\underset{x \to 0}{\lim} x\sqrt{\cos {\cfrac{1}{x}}}\)
解:因为\(\left|\cos {\cfrac{1}{x}} \right| ≤ 1\),所以\(\underset{x \to 0}{\lim} x\sqrt{\cos {\cfrac{1}{x}}} = 0\)
【603】求\(\underset{x \to 0}{\lim} x\left[\cfrac{1}{x}\right]\)
解:因为\(x \neq 0\)时,有\(\cfrac{1}{x} - 1 < \left[\cfrac{1}{x}\right] ≤ \cfrac{1}{x}\),所以\(1 - x < x\left[\cfrac{1}{x}\right] ≤ 1\)。
而\(\underset{x \to 0}{\lim} (1 - x) = 1\),所以\(\underset{x \to 0}{\lim} x\left[\cfrac{1}{x}\right] = 1\)
【604】求\(\underset{n \to \infty}{\lim} \sin \left(\pi \sqrt{n^2 + 1}\right)\)
解:\(\underset{n \to \infty}{\lim} \sin \left(\pi \sqrt{n^2 + 1}\right) = \underset{n \to \infty}{\lim} (-1)^n \sin \left(\pi \sqrt{n^2 + 1} - n \pi \right) = \underset{n \to \infty}{\lim} (-1)^n \sin \cfrac{\pi}{\sqrt{n^2 + 1} + n} = 0\)
【605】求\(\underset{n \to \infty}{\lim} \sin^2 \left(\pi \sqrt{n^2 + n}\right)\)
解:\(\underset{n \to \infty}{\lim} \sin^2 \left(\pi \sqrt{n^2 + n}\right) = \underset{n \to \infty}{\lim} \cfrac{1}{2}\left(1 - \cos \left(2\pi \sqrt{n^2 + n}\right)\right) = \underset{n \to \infty}{\lim} \cfrac{1}{2}\left(1 - \cos \left(2\pi (\sqrt{n^2 + n} - n)\right)\right) = \underset{n \to \infty}{\lim} \cfrac{1}{2}\left(1 - \cos \left(2\pi \cfrac{n}{\sqrt{n^2 + n} + n}\right)\right) = \cfrac{1}{2}\left(1 - \cos \pi \right) = 1\)
【606】求\(\underset{n \to \infty}{\lim} \underset{n个}{\underbrace {\sin \sin \cdots \sin x}}\)
解:当\(0 ≤ x ≤ \pi\)时,有\(0 ≤ \sin x ≤ x\),显然\(\underset{n个}{\underbrace {\sin \sin \cdots \sin x}}\)是单调递减的。 根据单调数列有界必收敛的性质, 有\(\underset{n \to \infty}{\lim} \underset{n个}{\underbrace {\sin \sin \cdots \sin x}} = a\),并且\(a \in [0, 1]\)。
同理,当\(-\pi ≤ x ≤ 0\)时,有\(x ≤ \sin x ≤ 0\),\(\underset{n个}{\underbrace {\sin \sin \cdots \sin x}}\)是单调递增的。 有极限\(\underset{n \to \infty}{\lim} \underset{n个}{\underbrace {\sin \sin \cdots \sin x}} = a\),并且\(a \in [-1, 0]\)。
所以\(-\pi ≤ x ≤ \pi\)时,有\(\underset{n \to \infty}{\lim} \underset{n个}{\underbrace {\sin \sin \cdots \sin x}} = \sin \underset{n \to \infty}{\lim} \underset{n-1个}{\underbrace {\sin \sin \cdots \sin x}}\),即\(a = \sin a\)。所以\(a = 0\)。
又因为\(\sin x\)是以\(2\pi\)为周期的函数,所以对于任意的\(x \in R\), 都有\(\underset{n \to \infty}{\lim} \underset{n个}{\underbrace {\sin \sin \cdots \sin x}} = 0\)。