常用数学公式
1. 三角函数
和角公式 & 差角公式 | \(\cos (\alpha + \beta) = \cos (\alpha) \cos (\beta) - \sin (\alpha) \sin(\beta)\),\(\cos (\alpha - \beta) = \cos (\alpha) \cos (\beta) + \sin (\alpha) \sin(\beta)\) \( \sin (\alpha + \beta) = \sin(\alpha)\cos(\beta) + \sin(\beta)\cos(\alpha) \), \( \sin (\alpha - \beta) = \sin(\alpha)\cos(\beta) - \sin(\beta)\cos(\alpha) \) \( \tan (\alpha + \beta) = \cfrac{\tan (\alpha) + \tan (\beta)}{1 - \tan (\alpha) \tan (\beta)} \), \( \tan (\alpha - \beta) = \cfrac{\tan (\alpha) - \tan (\beta)}{1 + \tan (\alpha) \tan (\beta)} \) \( \cot (\alpha + \beta) = \cfrac{\cot (\alpha) \cot (\beta) - 1}{\cot (\beta) + \cot(\alpha)} \), \( \cot (\alpha + \beta) = \cfrac{\cot (\alpha) \cot (\beta) + 1}{\cot (\beta) - \cot(\alpha)} \) |
倍角公式 | \(\cos (2\alpha) = \cos^2(\alpha) - \sin^2(\alpha) = 2\cos^2(\alpha) - 1 = 1 - 2\sin^2(\alpha)\) \(\sin (2\alpha) = 2\cos(\alpha)\sin(\alpha)\) \(\tan (2\alpha) = \cfrac{2\tan(\alpha)}{1 - \tan^2(\alpha)}\) \(\cot (2\alpha) = \cfrac{\cot^2(\alpha) - 1}{2\cot(\alpha)}\) |
和差化积 | \(\sin(\alpha) + \sin(\beta) = 2\sin \left(\cfrac{\alpha + \beta}{2}\right)\cos \left(\cfrac{\alpha - \beta}{2}\right)\),
\(\sin(\alpha) - \sin(\beta) = 2\sin \left(\cfrac{\alpha - \beta}{2}\right)\cos \left(\cfrac{\alpha + \beta}{2}\right)\) \(\cos(\alpha) + \cos(\beta) = 2\cos \left(\cfrac{\alpha + \beta}{2}\right)\cos \left(\cfrac{\alpha - \beta}{2}\right)\), \(\cos(\alpha) - \cos(\beta) = -2\sin \left(\cfrac{\alpha + \beta}{2}\right)\sin \left(\cfrac{\alpha - \beta}{2}\right)\) |
欧拉公式 | \(e^{ix} = \cos x + i \sin x\), \(\sin x = \cfrac{e^{ix} - e^{-ix}}{2i} \), \(\cos x = \cfrac{e^{ix} + e^{-ix}}{2} \) |
正割余割 | \(\sec x = \cfrac{1}{\cos x}\), \(\csc x = \cfrac{1}{\sin x}\) |
2. 常见等式和不等式
平方和 | \(1^2 + 2^2 + \cdots + n^2 = \cfrac{n(n+1)(2n+1)}{6}\) |
立方和 | \(1^3 + 2^3 + \cdots + n^3 = (1 + 2 + ... + n)^2 = \left[\cfrac{n(n+1)}{2}\right]^2\) |
正弦绝对值 | \(|\sin(x_2) - \sin(x_1)| ≤ |x_2 - x_1|\) |
3. 微积分
\(f(x) = u(x)v(x)\) | \(f'(x) = u'(x)v(x) + u(x)v'(x)\) |
\(f(x) = \cfrac{u(x)}{v(x)}\) | \(f'(x) = \cfrac{u'(x)v(x) - u(x)v'(x)}{v^2(x)}\) |
4. 双曲函数
双曲正弦 | \(\sinh x = \cfrac{e^x - e^{-x}}{2}\) | 双曲余弦 | \(\cosh x = \cfrac{e^x + e^{-x}}{2}\) |
双曲正切 | \(\tanh x = \cfrac{\sinh x}{\cosh x} = \cfrac{e^x - e^{-x}}{e^x + e^{-x}}\) | 双曲余切 | \(\cosh x = \cfrac{\cosh x}{\sinh x} = \cfrac{e^x + e^{-x}}{e^x - e^{-x}}\) |
双曲正割 | \(\text{sech} x = \cfrac{1}{\cosh x} = \cfrac{2}{e^x + e^{-x}}\) | 双曲余割 | \(\text{csch} x = \cfrac{1}{\sinh x} = \cfrac{2}{e^x - e^{-x}}\) |
等式 | \(\sinh (-x) = -\sinh x\) \(\cosh (-x) = \cosh x\) \(\cosh^2 x - \sinh^2 x = 1\) |
||
加法公式 | \(\sinh (x + y) = \sinh x \cosh y + \cosh x \sinh y\), \(\sinh (x - y) = \sinh x \cosh y - \cosh x\sinh y\) \(\cosh (x + y) = \cosh x \cosh y + \sinh x \sinh y\), \(\cosh (x - y) = \cosh x \cosh y - \sinh x\sinh y\) |
||
倍角公式 | \(\sinh (2x) = 2\sinh x \cosh y\) \(\cosh (2x) = \cosh^2 x + \sinh^2 x = 1 + 2\sinh^2 x\) |
||
和差化积 | \(\sinh x + \sinh y = 2\sinh \cfrac{x + y}{2}\cosh \cfrac{x - y}{2}\) \(\sinh x - \sinh y = 2\cosh \cfrac{x + y}{2}\sinh \cfrac{x - y}{2}\) |
5. 高等代数
混合积 | \(\boldsymbol{a} \times \boldsymbol{b} \cdot \boldsymbol{c} = \boldsymbol{b} \times \boldsymbol{c} \cdot \boldsymbol{a} = \boldsymbol{c} \times \boldsymbol{a} \cdot \boldsymbol{b}\) |
矢量的连乘积 | \(\boldsymbol{a} \cdot (\boldsymbol{b} \times \boldsymbol{c}) = \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \\ \end{vmatrix}, \boldsymbol{a} \cdot (\boldsymbol{b} \times \boldsymbol{c}) = \boldsymbol{b} \cdot (\boldsymbol{c} \times \boldsymbol{a}) = \boldsymbol{c} \cdot (\boldsymbol{a} \times \boldsymbol{b}) \) |