数列极限的四则运算
设数列\(\{a_n\}, \{b_n\}\)都是收敛数列,那么\(\{a_n±b_n\}, \{a_nb_n\}\)也是收敛数列,而且存在关系: $$ \begin{equation} \lim_{n \to \infty}\left(a_n ± b_n\right) = \lim_{n \to \infty}a_n ± \lim_{n \to \infty}b_n \end{equation} $$ $$ \begin{equation} \lim_{n \to \infty}\left(a_n b_n\right) = \lim_{n \to \infty}a_n \cdot \lim_{n \to \infty}b_n \end{equation} $$ 特别的,当\(\underset{n \to \infty}{\lim}b_n \neq 0\)时,数列\(\{\frac{a_n}{b_n}\}\)也收敛,并且: $$ \begin{equation} \lim_{n \to \infty}\left(\frac{a_n}{b_n}\right) = \frac{\lim_{n \to \infty}a_n}{\lim_{n \to \infty}b_n} \end{equation} $$
【46】求极限\(\lim_{n\to\infty}\frac{10000n}{n^2+1}\)
解:\( \lim_{n\to\infty}\frac{10000n}{n^2+1} = \lim_{n\to\infty}\frac{10000}{n + \frac{1}{n}} = 0 \)
【47】求极限\(\lim_{n\to\infty}\left(\sqrt{n+1}-\sqrt{n}\right)\)
解:\( \lim_{n\to\infty}\left(\sqrt{n+1}-\sqrt{n}\right) = \lim_{n\to\infty}\left(\frac{\left(\sqrt{n+1}-\sqrt{n}\right)\left(\sqrt{n+1}+\sqrt{n}\right)}{\left(\sqrt{n+1}+\sqrt{n}\right)}\right) = \lim_{n\to\infty}\left(\frac{n+1 - n}{\left(\sqrt{n+1}+\sqrt{n}\right)}\right)=0\)
【49】求极限\(\lim_{n\to\infty}\frac{(-2)^n+3^n}{(-2)^{n+1}+3^{n+1}} \)
解:\(\lim_{n\to\infty}\frac{(-2)^n+3^n}{(-2)^{n+1}+3^{n+1}} = \lim_{n\to\infty}\frac{\left(-\frac{2}{3}\right)^n + 1}{-2\left(-\frac{2}{3}\right)^n+3} \) 根据例题【L2】的结论有\(\lim_{n\to\infty}\left(-\frac{2}{3}\right)^n = 0\) 所以,\(\lim_{n\to\infty}\frac{(-2)^n+3^n}{(-2)^{n+1}+3^{n+1}} = \frac{1}{3}\)
【50】\(\lim_{n\to\infty}\frac{1+a+a^2+\cdots+a^n}{1+b+b^2+\cdots+b^n}, |a| < 1, |b| < 1\)
解:\(1+a+a^2+\cdots+a^n = \frac{1-a^{n+1}}{1-a}, 1+b+b^2+\cdots+b^n=\frac{1-b^{n+1}}{1-b}\) 所以,\(\lim_{n\to\infty}\frac{1+a+a^2+\cdots+a^n}{1+b+b^2+\cdots+b^n} = \frac{(1-b)(1-a^{n+1})}{(1-a)(1-b^{n+1})} = \frac{1-b}{1-a}\)
【51】\(\lim_{n\to\infty}\left(\frac{1}{n^2}+\frac{2}{n^2}+\cdots+\frac{n-1}{n^2}\right)\)
解:\(\frac{1}{n^2}+\frac{2}{n^2}+\cdots+\frac{n-1}{n^2} = \frac{1+2+\cdots+(n-1)}{n^2} = \frac{n-1}{2n}\) 所以,\(\lim_{n\to\infty}\left(\frac{1}{n^2}+\frac{2}{n^2}+\cdots+\frac{n-1}{n^2}\right) = \frac{1}{2}\)
【53】\(\lim_{n\to\infty}\left[\frac{1^2}{n^3} + \frac{2^2}{n^3} + \cdots + \frac{(n-1)^2}{n^3}\right]\)
解:根据【2】的结论有:
\(1^2 + 2^2 + \cdots + (n-1)^2 = \frac{(n-1)n(2n-1)}{6}\)。
所以,\(\lim_{n\to\infty}\left[\frac{1^2}{n^3} + \frac{2^2}{n^3} + \cdots + \frac{(n-1)^2}{n^3}\right] =
\lim_{n\to\infty}\frac{2n^2 - 3n + 1}{6n^2} = \frac{1}{3}\)。
【54】\(\lim_{n\to\infty}\left[\frac{1^2}{n^3}+\frac{3^2}{n^3}+\cdots+\frac{(2n-1)^2}{n^3}\right]\)
解:因为\(1^2 + 3^2 + \cdots + (2n-1)^2 = (1^2 + 2^2 + \cdots + (2n)^2)-(2^2 + 4^2 + \cdots + (2n)^2) =
\frac{2n(2n+1)(4n+1)}{6} - 4\frac{n(n+1)(2n+1)}{6} \)
所以,\(\lim_{n\to\infty}\left[\frac{1^2}{n^3}+\frac{3^2}{n^3}+\cdots+\frac{(2n-1)^2}{n^3}\right] = \frac{8}{6} = \frac{4}{3}\)
【55】\(\lim_{n\to\infty}\left(\frac{1}{2} + \frac{3}{2^2} + \cdots + \frac{2n-1}{2^n}\right)\)
解:\(\frac{1}{2} + \frac{3}{2^2} + \cdots + \frac{2n-1}{2^n} = \frac{2^{n-1} + 3\cdot2^{n-2} +\cdots+2(2n-3)+(2n-1)}{2^n}\)
令\(a=2^{n-1} + 3\cdot2^{n-2} +\cdots+2(2n-3)+(2n-1)\),则有:
$$ \begin{cases}
a & = & & & 2^{n-1} & + & 3\cdot2^{n-2} & + & \cdots & + & 2(2n-3) & + & (2n-1) \\
2a & = & 2^n & + & 3\cdot2^{n-1} & + & 5\cdot2^{n-2} & + & \cdots & + & 2(2n-1) & &
\end{cases} $$
两式相减得到:
$$ \begin{matrix}
a = 2^n + 2^n + \cdots + 2^2 - 2n + 1 = 2^n + b - 2n + 1 \\
b = 2^2 + \cdots + 2^n = 2^{n+1} - 2^2
\end{matrix} $$
所以,
$$ \lim_{n\to\infty}\left(\frac{1}{2} + \frac{3}{2^2} + \cdots + \frac{2n-1}{2^n}\right)
= \lim_{n\to\infty}\left(\frac{2^n + 2^{n+1} - 2^2 - 2n + 1}{2^n}\right)
= 3
$$
【56】\(\lim_{n\to\infty}\left[\frac{1}{1\cdot2} + \frac{1}{2\cdot3} + \cdots + \frac{1}{n(n+1)}\right]\)
解:因为\(\frac{1}{1\cdot2} + \frac{1}{2\cdot3} + \cdots + \frac{1}{n(n+1)} = \left(1 - \frac{1}{2}\right) + \left(\frac{1}{2} - \frac{1}{3}\right) + \cdots + \left(\frac{1}{n} - \frac{1}{n+1}\right) = 1 - \frac{1}{n+1}\) 所以,\(\lim_{n\to\infty}\left[\frac{1}{1\cdot2} + \frac{1}{2\cdot3} + \cdots + \frac{1}{n(n+1)}\right] = 1\)。
【57】\(\lim_{n\to\infty}(\sqrt[2]{2}\sqrt[4]{2} \cdots \sqrt[2^n]{2})\)
解:\(\sqrt[2]{2}\sqrt[4]{2} \cdots \sqrt[2^n]{2} = 2^{\frac{1}{2} + \frac{1}{4} + \cdots + \frac{1}{2^n}} = 2^{1 - \left(\frac{1}{2}\right)^n} \) 所以,\(\lim_{n\to\infty}(\sqrt[2]{2}\sqrt[4]{2} \cdots \sqrt[2^n]{2}) = 2\)
【127】设数列\(\{x_n\}\)收敛,而数列\(\{y_n\}\)发散,则能否断定关于数列\(\{x_n+y_n\}\)和\(\{x_ny_n\}\)的收敛性?
解:数列\(\{x_n+y_n\}\)一定发散,因为如果它收敛的话,那么我们就有数列\((x_n+y_n)-x_n\)收敛, 这与题设是矛盾的,所以数列\(\{x_n+y_n\}\)一定发散。
而数列\(\{x_ny_n\}\)的收敛性是不确定的,比如说数列\(x_n = \frac{1}{n}\)收敛,\(y_n = (-1)^n\)发散, 而\(x_ny_n = (-1)^n\frac{1}{n}\)收敛,其极限为0。再比如说数列\(x_n = \frac{1}{n}\)收敛,\(y_n = 2^n\)发散, 此时的数列\(x_ny_n=2^n\frac{1}{n}\)就是发散的。
【128】设数列\(\{x_n\}\)和\(\{y_n\}\)发散,则能否断定数列\(\{x_n+y_n\}\)和\(\{x_ny_n\}\)发散?
解:不能断定。
(1). 对于数列\(\{x_n+y_n\}\),我们假设数列\(x_n = 1+(-1)^n\),\(y_n = 1 - (-1)^n\)发散,显然\(x_n+y_n = 2\)收敛。
(2). 对于数列\(\{x_ny_n\}\),假设数列\(x_n = y_n = (-1)^n\),显然\(x_ny_n = 1\)收敛。
【129】设数列\(\lim_{n \to \infty}x_n = 0\),\(\{y_n\}\)为任意数列,则能否断定\(\lim_{n \to \infty}x_ny_n = 0\)
解:不能。
比如\(x_n=\frac{1}{n}, y_n = n^2\),显然\(x_ny_n = n\)发散。
【130】设\(\lim_{n \to \infty}x_ny_n = 0\),能否断定\(\lim_{n \to \infty}x_n = 0\)或\(\lim_{n \to \infty}y_n = 0\)
解:不能。
比如数列\(x_n = 1 + (-1)^n, y_n = 1 - (-1)^n\)都发散,但\(x_ny_n = [1+(-1)^n][1-(-1)^n] = 1 - (-1)^n + (-1)^n - 1 = 0\)收敛。
【429】\(\underset{n \to \infty}{\lim}\cfrac{1}{n}\left[\left(x + \cfrac{a}{n}\right) + \left(x + \cfrac{2a}{n}\right) + \cdots + \left(x + \cfrac{(n-1)a}{n}\right)\right]\)
解:\(\underset{n \to \infty}{\lim}\cfrac{1}{n}\left[\left(x + \cfrac{a}{n}\right) + \left(x + \cfrac{2a}{n}\right) + \cdots + \left(x + \cfrac{(n-1)a}{n}\right)\right] = \underset{n \to \infty}{\lim}\cfrac{1}{n}\left[(n - 1)x + a\cfrac{(n-1)n}{2n} \right] = \underset{n \to \infty}{\lim}\cfrac{n-1}{n}(x + \cfrac{a}{2}) = x + \cfrac{a}{2}\)
【430】\(\underset{n \to \infty}{\lim}\cfrac{1}{n}\left[\left(x + \cfrac{a}{n}\right)^2 + \left(x + \cfrac{2a}{n}\right)^2 + \cdots + \left(x + \cfrac{(n-1)a}{n}\right)^2\right]\)
解:\(\underset{n \to \infty}{\lim}\cfrac{1}{n}\left[\left(x + \cfrac{a}{n}\right)^2 + \left(x + \cfrac{2a}{n}\right)^2 + \cdots + \left(x + \cfrac{(n-1)a}{n}\right)^2\right] = \underset{n \to \infty}{\lim}\cfrac{1}{n}\left[(n-1)x^2 + \cfrac{2ax}{n}\underset{i = 1}{\overset{n-1}{\Sigma}}i + \cfrac{a^2}{n^2}\underset{i = 1}{\overset{n-1}{\Sigma}}i^2\right] = \underset{n \to \infty}{\lim}\cfrac{1}{n}\left[(n-1)x^2 + \cfrac{2ax}{n}\cfrac{(n-1)n}{2} + \cfrac{a^2}{n^2}\cfrac{(n-1)n(2n -1)}{6}\right] = x^2 + ax + \cfrac{a^2}{3} \)
【431】\(\underset{n \to \infty}{\lim}\cfrac{1^2 + 3^2 + \cdots + (2n-1)^2}{2^2 + 4^2 + \cdots + (2n)^2}\)
解:\(\underset{n \to \infty}{\lim}\cfrac{1^2 + 3^2 + \cdots + (2n-1)^2}{2^2 + 4^2 + \cdots + (2n)^2} = \underset{n \to \infty}{\lim}\cfrac{4\underset{i = 1}{\overset{n}{\Sigma}}i^2 - 4\underset{i = 1}{\overset{n}{\Sigma}}i + n}{4\underset{i = 1}{\overset{n}{\Sigma}}i^2}=1\)
【432】\(\underset{n \to \infty}{\lim}\left(\cfrac{1^3 + 2^3 + \cdots + n^3}{n^3} - \cfrac{n}{4}\right)\)
解:\(\underset{n \to \infty}{\lim}\left(\cfrac{1^3 + 2^3 + \cdots + n^3}{n^3} - \cfrac{n}{4}\right) = \underset{n \to \infty}{\lim}\left(\cfrac{n^2(n+1)^2}{4n^3} - \cfrac{n}{4}\right) = \underset{n \to \infty}{\lim}\cfrac{2n +1}{4n} = \cfrac{1}{2}\)
【433】\(\underset{n \to \infty}{\lim}\cfrac{1^3 + 4^3 + 7^3 + \cdots +(3n - 2)^3}{[1 + 4 +7 + \cdots + (3n - 2)]^2}\)
解:\(\underset{n \to \infty}{\lim}\cfrac{1^3 + 4^3 + 7^3 + \cdots +(3n - 2)^3}{[1 + 4 +7 + \cdots + (3n - 2)]^2} = \underset{n \to \infty}{\lim}\cfrac{\underset{i = 1}{\overset{n}{\Sigma}}(27n^3 - 36n^2 + 36n - 8)}{\left(3\frac{n(n+1)}{2} - 2n\right)^2} = \underset{n \to \infty}{\lim}\cfrac{27\left(\frac{n(n+1)}{2}\right)^2 + \underset{i = 1}{\overset{n}{\Sigma}}(- 36n^2 + 36n - 8)}{\left(3\frac{n(n+1)}{2} - 2n\right)^2} = 3\)
【434】把由抛物线\(y = b\left(\cfrac{x}{a}\right)^2\), \(Ox\)轴及直线\(x = a\)所围成的曲边三角形\(OAM\)的面积, 当作以\(\cfrac{a}{n}\)为底的各内接矩形面接之和当\(n \to \infty\)的极限值,求此面积。
解:曲边三角形\(OAM\)的面积为\(\underset{n \to \infty}{\lim}\underset{i = 1}{\overset{n-1}{\Sigma}}\left(\cfrac{a}{n}b\left(\cfrac{ai}{na}\right)^2\right) = \underset{n \to \infty}{\lim}\cfrac{ab(n-1)n(2n-1)}{6n^3} = \cfrac{ab}{3}\)